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We present the results of a detailed study of energy correlations at steady state for a 1-D
model of coupled energy and matter transport. Our aim is to discover—via theoretical
arguments, conjectures, and numerical simulations—how spatial covariances scale with
system size, their relations to local thermodynamic quantities, and the randomizing
effects of heat baths. Among our findings are that short-range covariances respond
quadratically to local temperature gradients, and long-range covariances decay linearly
with macroscopic distance. These findings are consistent with exact results for the
simple exclusion and KMP models.
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INTRODUCTION

Transport processes, such as heat flow through a conducting medium in contact
with unequal heat reservoirs, are intrinsically nonequilibrium phenomena because
of the presence of nonzero currents. (5,17) A central problem in nonequilibrium
statistical physics is to explain how such large-scale, macroscopic processes arise
from complex microscopic interactions. The most basic questions are perhaps
those of mean profiles of quantities of physical interest and their responses to
external forces. Nonequilibrium steady states, on the other hand, are well known
to be characterized by large fluctuations, and among the simplest measures of
fluctuations are temporal and spatial correlations.

In this paper, we present a systematic study of spatial correlations at steady
state for a class of 1-D stochastic models called Random Halves Models. A
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detailed description of this class of models is given in Sec. 1.1. Very briefly, a
linear chain of open cells is connected to two unequal heat baths, which inject
into the chain tracer particles at characteristic rates and energies. Energy storage
devices are systematically placed throughout the chain to mark local energy levels.
Their contents are redistributed by the tracer particles as they move through the
chain. These models were introduced in Ref. 9 as stochastic idealizations of certain
mechanical models. (16,18)

Our study is based on a combination of analytic arguments and numerical
simulations. We believe random halves models are excellent candidates for this
method of investigation for two reasons. First, their dynamics are richer and more
complex than rigorously-understood models such as the simple exclusion(6) and
KMP models, (13) as random halves models have two transported quantities (energy
and matter) and highly nonlinear interactions involving two different time scales.
These features make a purely analytical study more difficult. Second, all of the
forces acting on this system are clearly identified. This is seldom the case in more
realistic physical models.

Our main results can be summarized as follows. Given boundary conditions,
i.e., the temperature and injection rate of each bath, we let Si denote the stored
energy at the i th site, and CovN (Si , Sj ) the covariance of Si and Sj in a chain
of length N . Our first finding is CovN (Si , Sj ) ∼ 1

N for i �= j , which leads us to
consider the following two functions describing the covariances of stored energies
at microscopic and macroscopic distances:

C(x) = lim
N→∞

N · CovN

(
S[x N ], S[x N ]+1

)
, x ∈ (0, 1);

C2(x, y) = lim
N→∞

N · CovN

(
S[x N ], S[yN ]

)
, x, y ∈ (0, 1), x �= y.

We show that C(x) has the form

C(x) ≈ ϕ̂bc(x) · A(κ(x)) · T ′(x)2 (1)

where the right side is to be interpreted as follows: ϕ̂bc(x) is a measure of effective
distance to the baths, a rough approximation of which is ϕ̂bc(x) ≈ 4x(1 − x);
T (x) is local temperature, and T ′(x) is temperature gradient; κ(x) is local particle
density, and A(κ) → 0 as κ → ∞. Note the quadratic dependence on the local
temperature gradient. For long-range covariances, we find that for fixed x , the
function y 	→ C2(x, y) is continuous but not differentiable at y = x , decreasing
roughly linearly as |y − x | increases.

Our numerical results are consistent with exact analytic results on the simple
exclusion and KMP models. (3,6,7,20) We extend the existing picture to a setting
of coupled energy and matter transport, with features not present in these two
previously studied models. For example, we show that energy covariances at
microscopic distances respond quadratically to local temperature gradients (which
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vary along the chain; see Ref. 9). There is a second transported quantity, namely
matter in the form of particles, and energy covariances are shown to be inversely
related to local particle density. Throughout the paper, we provide cross-checking
numerical evidence for the phenomena we identify, and venture to give a physical
interpretation whenever we can. See Refs. 1, 2, 11, 14, and 15 for other relevant
works on this topic.

While most of the results presented here are specific to 1-D, they also
serve as a basis for direct comparisons with higher dimensions. A corresponding
analysis of random halves models in 2 and 3-D is underway. The results will be
reported in a separate paper.

Note on simulations. All of our numerical results are obtained via direct simu-
lation. That is, our computer programs faithfully implement the dynamics of the
random halves model described in Sec. 1.1, and expectation values with respect
to the invariant measures are computed as time averages over long trajectories.
Some relevant numerical issues are discussed in Appendix A.

1. THE RANDOM HALVES MODEL

1.1. Model Description and Physical Interpretation

A class of models of nonequilibrium phenomena is introduced in Ref. 9.
In each model, there is a homogeneous conducting medium represented by a
linear chain of N identical “cells” with stochastic heat baths coupled to the ends
of the chain. Within each cell, there is a stored energy which characterizes the
“temperature” at that location. Matter (in the form of tracer particles) and energy
(in the form of tracer kinetic energy) are injected into the system by the heat
baths; they are eventually absorbed by the heat baths. Tracer particles interact
with the local system at each site, redistributing the stored energies as they move
about in the chain; they do not interact directly with each other. This general
framework was introduced as an abstraction of the mechanical models in Refs. 16,
18. It encompasses both “Hamiltonian” models with conservative deterministic
dynamics (the heat baths being the only sources of randomness), and stochastic
models, in which the microscopic dynamics are defined by conservative stochastic
rules.

For concreteness, we begin by describing a slightly simplified version of the
mechanical models studied in Refs. 16, 18. In this rotating disc model, each cell
contains a disc nailed down at its center, about which it rotates freely (see Fig. 1).
Whenever a tracer collides with a disc, it exchanges kinetic energy with the disc via
a deterministic rule, e.g. the angular momentum of the disc may be interchanged
with the tangential component of the tracer’s momentum. When a tracer collides
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Fig. 1. The rotating disc model. The “random halves” model studied in this paper
is a stochastic version of this model.

with a cell wall, it reflects elastically. Here, the stored energy at each site is the
rotational energy of the disc.

The random halves model studied in the present paper are stochastic
idealizations of mechanical models like the rotating disc model described above.
Nonequilibrium energy and particle density profiles of random halves models have
been analyzed in Ref. 9. The rest of this section reviews relevant parts of that paper.

Precise description of the Random Halves Model. There are N sites, labeled
1, 2, . . . N , with tracers moving through the chain. At each site there is an abstract
energy storage tank. We let Si (t) denote the amount of energy in the tank at site i
at time t . The microscopic dynamics are defined by the following rules. Fix δ > 0.
Each tracer is equipped with two independent exponential clocks. Clock 1, which
signals the times of energy exchanges with tanks, rings at rate

√
e(t)/δ, where e

is the kinetic energy of the tracer. Clock 2, which signals the times of site-to-site
movements, rings at rate

√
e(t). Suppose a tracer is at site i and one of its clocks

rings. Then instantaneously:

(i) If Clock 1 rings, the tracer energy e and the stored energy Si are pooled
together and split randomly. That is, the tracer gets U · (e + Si ) units of
energy and the tank gets (1 − U ) · (e + Si ), where U ∈ [0, 1] is uniformly
distributed and independent of all other random variables.

(ii) If Clock 2 rings, the tracer leaves site i . It jumps with equal probability to
sites i ± 1. A tracer entering site 0 or site N + 1 exits the system forever.

All tracers originate from and eventually exit to one of the heat baths. Each heat
bath injects tracers with independent, exponentially-distributed energies into
the system. The left bath injects tracers with mean energy TL into site 1 at an
exponential rate of ρL , and the right bath injects tracers with mean energy TR into
site N at a rate of ρR . Tracers in the system are indistinguishable.

Physical interpretation and remarks. It is natural to think of the parameters
TL and TR as temperatures. This leads us to define the temperature Ti at site i in
an N -chain to be Ti := E(Si ), where the expectation is taken with respect to the
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invariant measure of the N -chain. The injection rates ρL and ρR can be rewritten
in terms of chemical potentials; we do not pursue this analogy further.

The Hamiltonian model contains a small length parameter which does not
appear in the stochastic model, namely a length � which measures the size of the
cell. In the stochastic model, we set � = 1. It is useful to keep this in mind in
dimensional analysis.

There are two time scales in our system, one associated with the local dynam-
ics at each site and the other the movement of tracers along the chain. The ratio of
these two time scales is δ. For example, δ 
 1 means that on average, tracer-tank
energy exchanges occur much more frequently than site-to-site movements of
tracers. Steady-state macroscopic profiles such as temperature and tracer density
do not depend on δ, but δ can have a significant impact on the numerical values
of spatial and temporal correlations. In this paper, we have chosen to simplify
matters by fixing δ, which throughout the paper is set equal to 1

10 .
At any moment in time, the number of tracers at each site can vary from 0

to ∞. Observe also that the interaction in this simple model is highly nonlinear,
even though there are no direct tracer-tracer or tank-tank interactions: tracers at the
same site exchange energy via interacting with the tank, and all actions—including
energy exchanges and site-to-site jumps—take place at rates proportional to the
“speeds” (the square roots of the kinetic energies) of the tracers at that moment
in time. This is essential if these stochastic models are to mimic the behaviors of
their Hamiltonian counterparts.

1.2. Invariant Measures at Equilibrium

At equilibrium, i.e., when the left and right baths have equal temperatures
and injection rates, the invariant measure of the random halves model is known
explicitly. To give its density, we need a little bit of notation: the state of a single
cell in which there are exactly k tracers is specified by (S, {e1, e2, . . . , ek}) where
S > 0 is the stored energy, i.e., the energy of the tank, and {e1, e2, . . . , ek} is an
unordered set of k positive numbers representing the k tracer energies.4 Let �k

denote the set of all possible states of a single cell with exactly k tracers present.
The state space for a single cell is then the disjoint union � = ∪k�k .

Proposition 1.1. (9) Let TL = TR = T , and ρL = ρR = ρ. Then the unique invari-
ant probability measure of the N-chain is the N-fold product

µN = µT,ρ × · · · × µT,ρ

4 It is an unordered set because the tracers are indistinguishable.
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where µT,ρ is the measure giving the statistics within each cell. The measure µT,ρ

is defined by:

(i) The number of tracers present is a Poisson random variable with mean
κ ≡ 2ρ

√
π/T , i.e.,

µT,ρ(�k) = pk := κk

k!
e−κ , k = 0, 1, 2, . . . . (2)

(ii) The conditional density of µT,ρ on �k is ckσk({e1, · · · , ek}, S) where

σk({e1, . . . , ek}, S) = 1√
e1 · . . . · ek

e−β(e1+...+ek+S); (3)

here β = 1/T , and ck = β k! (β/π )k/2 is the normalizing constant.

Proposition 1.1 shows that at equilibrium, the stored energies at different sites
are entirely uncorrelated. A generalization of this result is given in Proposition 5.1.

1.3. Macroscopic Equations of Nonequilibrium Steady States

We now fix arbitrary boundary conditions TL , TR , ρL , and ρR , and give the
equations of temperature and tracer profiles in nonequilibrium steady states.

Assumption 1. We assume that for each N, there is a unique invariant probability
measure µN to which all initial data converge.

Because the energies are unbounded, a tightness argument is needed to guar-
antee existence. Uniqueness should be straightforward. In what follows, the word
“mean” refers to expectation with respect to µN . We identify each site i with
the point xi = i

N+1 in the unit interval, and think of x0 = 0 and xN+1 = 1 as the
locations of the baths. For i = 1, . . . , N , define

ρ(xi ) = mean number of jumps from site i to site i + 1 per unit time
= mean number of jumps from site i to site i − 1 per unit time;

q(xi ) = mean energy flow from site i to site i + 1 per unit time
= mean energy flow from site i to site i − 1 per unit time.

That is to say, the mean number of jumps out of site i per unit time is 2ρ(xi );
half go to the right and half to the left, and so on. The quantities ρ and q are
well-defined in steady state and have very simple behavior:

Lemma 1.1. (9) With ρ and q defined as above, we have, for x = xi , i = 1, . . . , N,

(i) ρ(x) = ρL + (ρR − ρL ) x;
(ii) q(x) = ρL TL + (ρR TR − ρL TL ) x.
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As N → ∞, these functions converge (trivially) to linear or, more accurately,
affine functions on (0, 1). Note that ρ ′ and q ′ are the steady-state tracer and energy
currents, respectively. These currents by themselves, however, do not determine
steady state profiles such as those for temperature and tracer density. The following
assumption is used to deduce such information:

Assumption 2. (A version of LTE) For 1 ≤ i ≤ N, let µN ,i denote the marginal
of µN at the site i . We assume that for every x ∈ (0, 1), µN ,[x N ] converges as
N → ∞ to µT,ρ(x) for some T = T (x) > 0. A tightness condition for all the
µN ,[x N ] is also assumed.

Let ki denote the number of tracers present at site i . Recall that Si is the
stored energy.

Theorem 1. (9) Let arbitrary boundary conditions TL , TR, ρL , ρR be given. Under
Assumptions 1 and 2,

T (x) = lim
N→∞

EµN

(
S[x N ]

)
and κ(x) = lim

N→∞
EµN

(
k[x N ]

)
(4)

are well-defined and are given by

T (x) = q(x)

ρ(x)
and κ(x) = 2

√
π · ρ(x)

√
T (x)

. (5)

See Ref. 9 for details.

2. GLOBAL FLUCTUATIONS AND PAIR CORRELATIONS

This paper concerns the spatial energy covariances at steady state of the ran-
dom halves model described in Sec. 1.1. More precisely, let boundary conditions
TL , TR, ρL and ρR be specified, and consider an N -chain. The quantities of interest
are

CovN (Si , Sj ) = EµN (Si S j ) − EµN (Si ) EµN (Sj ), 1 ≤ i, j ≤ N , i �= j.

We begin by examining how these quantities scale with N .

2.1. Scaling of Total-Energy Variance

For an N -chain with boundary conditions TL , TR, ρL and ρR , we consider
the total energy variance

V (N ; TL , TR, ρL , ρR) = Var

(
N∑

i=1

Si

)

. (6)
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Keeping the boundary conditions fixed, we treat V = V (N ) as a function of N ,
and observe that V = V0 + V1 where

V0 =
N∑

i=1

Var(Si ) and V1 =
∑

i

∑

j �=i

CovN (Si , Sj ). (7)

By Theorem 1,

lim
N→∞

1

N
V0(N ) =

∫ 1

0
T (x)2 dx . (8)

That is, V0(N ) ∼ B0 N for N � 1 with B0 = ∫ 1
0 T (x)2 dx .

When TL = TR , V1 ≡ 0 (see Sec. 1.2), so that V (N ) = V0(N ) + V1(N ) ∼ N .
We expect this to be true when TL �= TR on physical grounds, which leads to the
question: is it true that V1(N ) ∼ B1 N , and if so, what is the sign of B1? Two
sets of numerical simulations are performed to resolve this. In one, we compute
V1 = V − V0 directly as a function of N . In the other, we start from equilibrium,
and hope to observe a quadratic response as a temperature gradient is introduced;
the sign of the quadratic term is then the sign of B1. The reason we expect a
quadratic (as opposed to linear) response is symmetry: the temperature gradients
TR − TL = 
T and TR − TL = −
T clearly lead to the same energy variances
and covariances.

Simulation 1. Fix bath temperatures TL , TR and injection rates ρL , ρR and
compute V (N ) and V0(N ) for increasing N.

The results, plotted in Fig. 2, show that

V (N ) ∼ B N with B > B0 > 0, (9)

i.e. V1(N ) ∼ B1 N for some B1 > 0.

Simulation 2. Fix N, ρL = ρR, and a number m > 0. Compute V and V0 for
various pairs (TL , TR) chosen so that TL+TR

2 = m, and investigate V1 = V − V0

as a function of 
T = TR − TL.

The results show that V1 depends quadratically on 
T with a strictly positive
coefficient. Taken together, these two simulations suggest that for ρL = ρR and
fixed mean temperature,

V1(N ; TL , TR, ρL , ρR) ∝ (TR − TL )2 · N , (10)

at least when |TR − TL | is not too large compared to the mean temperature in the
chain. We will see later that both the linear scaling of V1 with system size and
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Fig. 2. Variance of total energy as function of system size. The upper curve is
V (N ), the lower curve is V0(N ). The boundary conditions are TL = 10, TR = 100,
ρL = 20, and ρR = 10.

its quadratic response to temperature gradient are consistent with the scaling of
CovN (Si , Sj ).

Note that one advantage of probing spatial correlations via global quantities
such as V1 is that it can be computed more reliably than small, local quantities
such as CovN (Si , Sj ).

2.2. Pair Covariances

We begin now to investigate the individual terms in the sum V1 =∑
i

∑
j �=i CovN (Si , Sj ).

The two most basic characteristics of CovN (Si , Sj ) are its sign and order
of magnitude. The fact that V1(N ) ∼ N suggests that many of the covariances
are positive. Indeed, all of our numerical evidence points to CovN (Si , Sj ) ≥ 0, as
does the theoretical reasoning in the sections to follow. There is reason to remain
cautious, however: Since CovN (Si , Sj ) = 0 when the system is in equilibrium
(Proposition 1.1), and can be zero even when there is a tracer flux (Proposition 5.1),
one cannot conclude definitively via numerics alone that there are no strictly
negative correlations. See the remark at the end of this subsection on why the
nonnegativity of covariances in this model may be a delicate question.

We proceed to an analysis of the order of magnitude of CovN (Si , Sj ), assum-
ing in the heuristic discussion below that CovN (Si , Sj ) ≥ 0 for all i, j .

We propose to decompose V1 into

V1 =
∑

i

V1,i where V1,i =
∑

j �=i

CovN (Si , Sj )
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and reason as follows:

(i) For i away from the two ends of the chain, V1,i ∼ 1 since these terms sum
to V1 ∼ N and it is unlikely that they scale differently with N . (For i close
to the boundary, V1,i may be smaller due to the entrance of tracers with
i.i.d. energies.)

(ii) For each fixed i , the function j 	→ CovN (Si , Sj ) should decrease mono-
tonically as |i − j | increases: sites farther apart are expected to be less
correlated because they “communicate” via longer and noisier “channels.”

These considerations imply that CovN (Si , Si+1), with i away from 0 and N , are
among the larger of the ∼ N 2 terms in V1. Since CovN (Si , Si+1) is one of N terms
in V1,i , (i) above implies

CovN (Si , Si+1) >∼
1

N
.

We point out that the order of magnitude of CovN (Si , Si+1) contains a fair
amount of information about the shape of the function j 	→ CovN (Si , Sj ): if
CovN (Si , Si+1) ∼ 1

N , then CovN (Si , Sj ) ∼ 1
N for a definite fraction of j (because

these terms have to add up to ∼1). This points to an extremely slow decay of
CovN (Si , Sj ) with increasing distance between sites i and j . If, on the other hand,
CovN (Si , Si+1) � 1

N , then the function j 	→ CovN (Si , Sj ), j �= i , would have a
very sharp peak at j = i ± 1. The question is: which scenario is the case here?

To resolve this issue, we perform the following numerical simulation:

Simulation 3. For fixed boundary conditions, compute CovN (S[N/2], S[N/2]+1)
for a range of N .

Two sets of results are plotted in Fig. 3. They (and other data sets not shown here)
show that

CovN

(
S[N/2], S[N/2]+1

) ∼ 1

N
. (11)

As explained above, one may infer from this that all pair covariances
CovN (Si , Sj ) = O(1/N ), a fact confirmed by many subsequent simulations (see
e.g. Fig. 12).

Remarks on sign of CovN (Si, S j ). As far as we know, existing analytic
techniques for proving or disproving positivity of correlations do not apply to
the random halves model. This, in part, is due to the fact that in our model,
mechanisms conducive to both positive and negative correlations are at work,
and the actual covariance reflects a balance between these two tendencies. For
instance, a large, upward surge in the energies of incoming tracers has the effect of
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Fig. 3. Scaling of CovN with N . This plot shows N · CovN (S[N/2], S[N/2]+1) as a
function of N . Boundary conditions are TL = 10, TR = 190, and ρL = ρR = 20
for the upper curve and ρL = ρR = 40 for the lower one.

raising some of the stored energies above their expected values. It is believed that
such excursions lead to long-wavelength fluctuations with slow relaxation times,
resulting in positive correlations. (10) However, upon interacting with one of the
tanks, a tracer that acquires a higher-than-normal fraction of the energy is likely
to move more quickly to a neighboring site and to interact with the tank there,
possibly transferring its energy to the tank in its new location. Such a phenomenon
creates negative correlations between neighboring sites. In equilibrium, these two
tendencies balance perfectly, giving zero covariance (see Proposition 1.1). Further
numerical evidence in support of nonnegative covariances is given in Sec. 5.1.

3. COVARIANCE STRUCTURES “AT N = ∞”

The purpose of this short section is to make explicit the objects to be studied
in the rest of this paper and the assumptions under which we plan to operate.

The discussion in the Sec. 2.2 points to the following functions: Given
boundary conditions TL , TR, ρL and ρR , and x, y ∈ (0, 1), x �= y, define C(x)
and C2(x, y) by

C(x) = C(x ; TL , TR, ρL , ρR) = lim
N→∞

N · CovN

(
S[x N ], S[x N ]+1

)
,

C2(x, y) = C2(x, y; TL , TR, ρL , ρR) = lim
N→∞

N · CovN

(
S[x N ], S[yN ]

)
,

if these limits exist.
Supposing these functions are well defined, it is natural to ask (i) how C(x)

depends on local thermodynamic quantities such as T (x), κ(x) and their gradients,
and (ii) if these local quantities completely determine C(x). We present below an
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answer to the second question; it is one of a number of possible answers. Question
(i) is addressed in the next two sections.

Given x ∈ (0, 1) and (TL , TR, ρL , ρR), Theorem 1 gives a quadruple
(T∗, ρ∗, T ′

∗, ρ
′
∗) where T∗ = T (x), ρ∗ = ρ(x), T ′

∗ = T ′(x) and ρ ′
∗ = ρ ′. Conversely,

given x ∈ (0, 1) and a quadruple (T∗, ρ∗, T ′
∗, ρ

′
∗), it is easy to check that one can

solve the equations in Theorem 1 backwards and find the corresponding boundary
conditions. This one-to-one correspondence between boundary and local condi-
tions defines a function F with

F(x ; T∗, ρ∗, T ′
∗, ρ

′
∗) = C(x ; TL , TR, ρL , ρR) . (12)

Since we work only with finite chains, it is necessary to have a version of F
before the infinite-volume limit. Given (TL , TR, ρL , ρR), x and N , we let i = [x N ],
and let Ti , ρi ,
Ti and 
ρi be as follows: Ti is the mean temperature at site i , ρi

is the “injection rate” (see Sec. 1.3 for precise definition), 
Ti = Ti+1 − Ti and

ρi = ρi+1 − ρi . Let

FN

(
x ; Ti , ρi ,


Ti


N
,

ρi


N

)
= N · CovN (Si , Si+1)

where 
N = 1
N+1 . The next lemma shows that the function FN is well defined:

Lemma 3.1. Given N , i, Ti , ρi ,
Ti and 
ρi , there is a unique set of boundary
conditions (TL , TR, ρL , ρR) for the N-chain that leads to these values at site i
provided N is sufficiently large (or 
Ti and 
ρi are sufficiently small).

Proof: First, ρi and 
ρi determine ρL and ρR by linearity of ρ (see Lemma 1.1,
Sec. 1.3), provided 
ρi is small enough that both of these numbers are non-
negative. For definiteness, assume 
Ti > 0. We will find suitable TL and TR by
varying both until correct values are attained at site i : Fix the left bath temperature
temporarily at T̂L ∈ (0, Ti ), and vary the right bath temperature from Ti to ∞.
Since the temperature at site i increases strictly monotonically with the right bath
temperature, there exists a unique T̂R = T̂R(T̂L ) > Ti giving the correct value of Ti

at site i . Now look at the chain with bath temperatures T̂L and T̂R . As T̂L increases
to Ti , 
Ti decreases to 0, so for 
Ti sufficiently small, there is a unique TL for
which Ti+1 − Ti is equal to 
Ti . �

With F and FN as above, and for fixed boundary conditions, the limit in the
definition of C(x) is equivalent to

lim
N→∞

FN

(
x ; Ti , ρi ,


Ti


N
,

ρi


N

)
= F(x ; T∗, ρ∗, T ′

∗, ρ
′
∗) . (13)
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Such a limit involves difficult issues beyond the scope of this paper. For example,
while the convergence of Ti to T∗ as N → ∞ follows from LTE (Assumption 2),
the convergence of 
Ti


N
to T ′

∗ cannot be deduced from previous assumptions.
In addition to Assumptions 1 and 2 in Sec. 1.3, we now introduce two other

sets of assumptions on which the rest of our analysis relies.

Assumption 3. The functions C and C2 are well defined and finite-valued.

Assumption 4.

(i) In the context of (13), 
Ti


N
→ T ′

∗ as N → ∞.
(ii) The function F defined by (12) is differentiable.

Assumption 3 asserts the presence of a well-defined structure at “N = ∞” that
governs the covariance relationships of the invariant measures µN for large N .
Such a structure goes beyond the idea of LTE to treat information of the next order,
namely how µN deviates from local equilibrium at microscopic length scales, and
how it deviates from products of Gibbs measures (at varying local temperatures)
globally. Assumption 4 identifies some technical issues which we take for granted.

4. COVARIANCES AT MICROSCOPIC DISTANCES: ρL = ρR

This section and the next concern nearest-neighbor covariances in long
chains, i.e. CovN (Si , Si+1) for large N . We treat in this section the simpler case
where there is no tracer flux in the system; the equality ρL = ρR = ρ is assumed
throughout. Our aim is to discover how the functions C, equivalently F , depend
on the various quantities.

4.1. The Two Middle Sites

In this subsection, we fix x = 1
2 , and study the function (T, ρ, T ′) 	→

F( 1
2 ; T, ρ, T ′, 0) where F is as defined in Sec. 3. Here T, ρ and T ′ are quan-

tities associated with the midpoint of the chain; in particular, T ′ is the temperature
gradient at x = 1

2 . We begin by examining the dependence of F on T ′. Fix T and
ρ, and consider

F(T ′) = F T,ρ(T ′) = F
(

1

2
; T, ρ, T ′, 0

)
. (14)

That is to say, F(T ′) ≈ N · CovN (S[N/2], S[N/2]+1) for large N with boundary
conditions TL = T − 1

2 T ′, TR = T + 1
2 T ′ and ρL = ρR = ρ. Clearly, F(0) = 0,

and F is an even function due to the left-right symmetry. This leads one to expect
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Fig. 4. Scaling of middle-pair covariance with temperature gradient. The plot
shows CovN (S[N/2], S[N/2]+1) as a function of T ′ on a logarithmic scale. Boundary
conditions are chosen to fix T = 60 and κ = 2.5

√
π at x = 1

2 . Solid discs: N =
8; open circles: N = 20. A solid line of slope 2 is shown for reference. See
Appendix A for a discussion of simulation parameters.

a quadratic response when the system is taken out of equilibrium. The following
simulation confirms that the coefficient of the quadratic term is indeed nonzero.

Simulation 4. For various pairs of T and ρ, compute CovN (S[N/2], S[N/2]+1) for
a sample of T ′.

A set of results are plotted in Fig. 4. The data show that (i) ∂2 F
∂T ′2 (0) �= 0, and in

fact, (ii) F(T ′) is fairly well approximated by a quadratic function over the entire
range (−2T, 2T ) of T ′. (The minimum temperature tends to 0 as |T ′| → 2T .)
Note that if F(T ′) is smooth, then the only other possibility is F(T ′) ∼ T ′2k for
some k ∈ {2, 3, . . .}, which is clearly not the case here. Other data sets (not shown)
with different values of (T, ρ) confirm these conclusions.

We investigate next the dependence of a(T, ρ) := 1
2

d2 F
dT ′2 (0) on T and ρ. First,

we establish a simple result (which is expected from dimensional analysis):

Lemma 4.1. Fix T and ρ, and view λ > 0 as a parameter. Define F T,ρ and
Fλ2T,λρ as in (14). Then

Fλ2T,λρ(λ2T ′) = λ4 F T,ρ(T ′). (15)

Proof: Given T, ρ and T ′, let TL , TR and ρL = ρR be the boundary conditions
that give rise to these values at the two middle sites, and consider a second system
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with boundary conditions λ2TL , λ2TR and λρL = λρR and initial tank energies
λ2 times those of the first system. Via a standard coupling argument, the sample
paths for these two systems are easily matched. Corresponding sample paths give
rise to time evolutions with identical tracer counts in both systems – but with the
second system at energies λ2 times that of the first and running at speeds λ times
that of the first. This leads to (15). �

Let Fλ2T,λρ(T ′) ≈ aλT ′2. It follows from Lemma 4.1 that

aλ · (λ2T ′)2 ≈ Fλ2T,λρ(λ2T ′) ≈ λ4 F T,ρ(T ′) ≈ λ4a1T ′2. (16)

Thus aλ is independent of λ, and F T,ρ(T ′) can be written as Fκ (T ′) where
κ = 2ρ

√
π/T is the mean tracer count with respect to µT,ρ (see Sec. 1.2). The

preceding argument tells us that for any T, ρ, κ related as above, the function
A(κ) := a(T, ρ) is well-defined, and

CovN (SN/2, SN/2+1) ≈ 1

N
A(κ)T ′2 . (17)

A natural question is how A(κ) depends on κ . Other things being equal,
one would think intuitively that local thermal fluctuations are smaller when more
tracers are present, because stored energy is affected less by the entrance of a
tracer with very large or very small energy. To confirm this, and to collect data
for later use, we compute the function A. Practical reasons dictate that very short
chains be used due to the large number of data points (each one of which requiring
a separate run) and the time it takes for covariances to converge in long chains;
see Appendix A for a discussion of relevant numerical issues. However, some
understanding of the errors introduced by the use of very short chains is necessary
if these data are to be useful in later predictions.

Simulation 5. Compute A(κ) systematically for a range of κ using chains of 8
cells. Compute also some values of A(κ) using 16-chains for comparison.

The 8-chain results are shown in Fig. 5. Note that the function decreases mono-
tonically as expected, and A(κ) ∼ 1/κ as κ → ∞.

Let A8(κ) and A16(κ) denote the values of A(κ) computed using 8 cells
and 16 cells respectively. We computed A16(κ) for some values of κ , and find
these values to be somewhat larger than the corresponding values for A8. This is
consistent with Fig. 3, and the true A-values (defined at “N = ∞”) are likely to
be larger still. We find, however, that the ratios of the two sets of values remain
fairly constant as κ varies. For example,

1.14 < A16(κ)/A8(κ) < 1.20 for κ ∈ [2
√

π, 10
√

π ].
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Fig. 5. The A-curve computed using 8-chains. The boundary conditions are TL =
20, TR = 30, and ρL = ρR = 2.5κ/

√
π , and A(κ) is estimated using Eq. (17) with

N = 8. Left: Linear plot. Also shown are some points computed using 16-chains
(open circles; TL = 50, TR = 100, and ρL = ρR = 5κ/

√
2π ). Right: Log-log plot

shows that A(κ) ∼ 1/κ for κ � 1.

We will use the 8-chain A-curve data in our study of long-chain covariances. All
of our long-chain simulations involve κ in subintervals of the range shown above,
and we will only assume that A(κ) ≈ const · A8(κ).

4.2. Quadratic Responses to Local Temperature Gradients

We demonstrated in Sec. 4.1 that at x = 1
2 , the response to the local tem-

perature gradient T ′ is quadratic. We now examine the situation at x �= 1
2 . Recall

that our argument for showing that the leading term has order ≥2 at x = 1
2 uses

the left-right symmetry of the chain, a property not present at x �= 1
2 . Reasoning

physically, however, it is hard to imagine that the response to local temperature
gradient is sometimes quadratic, sometimes linear, or that the coefficient of the
linear term would vanish at exactly x = 1

2 independent of boundary conditions.
The following simulation confirms this thinking.

Simulation 6. For fixed x ∈ (0, 1), T = T (x) and ρ, compute CovN (S[x N ],

S[x N ]+1) for various values of T ′ = T ′(x). Repeat for various x �= 1
2 .

Figure 6 shows the results for some values of x . The function T ′ 	→
F(x ; T, ρ, T ′, 0) for fixed x , T , and ρ is clearly quadratic to leading order and
contains a nonzero third-order term (which is not present when x = 1

2 ). Other sets
of data, computed using different values of T and ρ, lead to the same conclusion.
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Fig. 6. Quadratic response to T ′ at x �= 1
2 . We fix x �= 1/2 and set T (x) = 60,

κ(x) = 5
√

π . We then compute CovN (S[x N ], S[x N ]+1) as a function of T ′(x). Solid
discs: x ≈ 0.27; open circles: x ≈ 0.65. Here, we use N = 12. We do not take T ′
much smaller than the values shown for reasons discussed in Appendix A.

Notice that a quadratic response to T ′ is consistent with the observation in
Sec. 2.1 that

∑
i �= j CovN (Si , Sj ) ∝ (TR − TL )2 · N .

4.3. Boundary Effects

In Secs. 4.1 and 4.2, we showed that (i) for each fixed x , T , and ρ,
F(x ; T, ρ, T ′, 0) ∼ T ′2 (at least for |T ′| not too large); and (ii) at x = 1

2 , the
coefficient in front of T ′2 is a function of κ( 1

2 ), that is to say, F( 1
2 ; T, ρ, T ′, 0) ≈

A(κ( 1
2 )) · T ′( 1

2 )2, the function A(κ) being defined by this relation at x = 1
2 . With

A(·) so defined, we now ask if the same relation holds at every x ∈ (0, 1), i.e., if it
is true that F(x ; T, ρ, T ′, 0) ≈ A(κ(x)) · T ′(x)2.

Consider, for the moment, a different situation in which the system is infinite
in length, i.e., x ∈ (−∞,∞), and a temperature gradient is maintained by, say, a
constant external field. One would expect such a system to be translation-invariant,
which implies that CovN (S[x N ], S[x N ]+1) = CovN (S[yN ], S[yN ]+1) if the quantities
A(κ)T ′2 at x and y are identical, i.e., we would expect the answer to the question
above to be affirmative.

Our system has no translation invariance to speak of and, at least for finite N ,
the randomizing effects of the baths are apparent: nearest-neighbor covariances are
significantly smaller near the boundaries because the baths inject tracers with i.i.d.
sequences of energies into the system. The answer to the question posed above
depends on how fast these randomizing effects dissipate. Do they decrease by a
certain amount per lattice site, or do they decrease with macroscopic distance?
The aim of the following simulation is to shed light on these questions.
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Fig. 7. Covariances with identical local conditions at various x . For each x ,
we choose boundary conditions so that T (x) = 60, T ′(x) = 60, ρ ≈ 7.75
(closed discs) and 19.4 (open discs). With these local conditions, we compute
CovN (S[x N ], S[x N ]+1) for various x symmetrically placed about x = 1

2 . Note that
each point requires a separate simulation. Here, N = 40. We include 1-standard
deviation error bars; see Appendix A for factors affecting the numerical accuracy
of computations.

Simulation 7. Fix a triplet (T∗, ρ∗, T ′
∗) and compute CovN (S[x N ], S[x N ]+1) for

various x, using (T∗, ρ∗, T ′
∗) as the local conditions at x. That is, for each x, we first

compute boundary conditions which give T (x) = T∗, T ′(x) = T ′
∗, and ρ(x) = ρ∗,

and then use these boundary conditions to compute the pair covariance at x.
Repeat for various choices of (T∗, ρ∗, T ′

∗).

The results, shown in Fig. 7, show clearly that the randomizing effects of baths
dissipate in a manner more like a diffusion process than by a definite amount per
lattice site. Note also the asymmetry of the data points: identical local conditions
at x and 1 − x do not produce equal covariance relations. This suggests that from
the conduction point of view, effective distance from the boundary may not equal
physical distance.

To capture the phenomenon observed, we introduce, for given boundary
conditions TL , TR and ρL = ρR = ρ, a function ϕbc(x) defined by the expression

C(x) = ϕbc(x) · A(κ(x))T ′(x)2 , x ∈ (0, 1) . (18)

We add the superscript “bc” to stress the fact that this function depends on boundary
conditions. By definition, ϕbc( 1

2 ) → 1 as T ′( 1
2 ) → 0. Since we do not know of

any other forces acting on the system, we think of ϕbc(x) as a measure of the
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randomizing effects of the baths at location x , and continue our investigation
based on this thinking.

We now seek to identify the function ϕbc(x). To capture the idea of “effective
distance to boundary,” we introduce the following time-to-boundary functions:5

in an N -chain, let τ
(N )
i denote the expected time for a tracer at site i to reach one

of the baths. We then have the relation

τ
(N )
i = 1√

T i

+ 1

2

(
τ

(N )
i−1 + τ

(N )
i+1

)
(19)

where Ti is the temperature profile and 1√
T i

the expected time a tracer spends at

site i . Identifying the i th site with xi = i
N+1 ∈ (0, 1) and letting τ = 1

N 2 τ
(N ), we

obtain, as N → ∞, the differential equation

τ ′′(x) = − 2
√

T (x)
, τ (0) = τ (1) = 0 . (20)

We define
ϕ̂bc(x) := const τ (x) (21)

where τ is the solution of (20) and the constant is chosen so that ϕ̂bc( 1
2 ) = ϕbc( 1

2 ),
and conjecture that ϕbc is approximately equal to ϕ̂bc. Note that ϕ̂bc also depends
on boundary conditions. We now test this conjecture numerically:

Simulation 8. Fix boundary conditions and N. For x ∈ (0, 1), estimate ϕbc(x)
by computing CovN (S[x N ], S[x N ]+1) and dividing the result by 1

N A(κ)T ′2. Compare
the resulting function to ϕ̂bc(x).

The results are displayed in Fig. 8. They show that to the degree that we are able to
estimate these functions accurately, the two graphs are in near-perfect agreement.
These graphs are not far from a perfect parabola, but the definitive presence
of asymmetry—in both Fig. 7 and Fig. 8—provides convincing evidence that at
comparable distances, it takes longer to reach the bath at the lower-temperature
end of the chain.

Remark. When the system is in equilibrium, i.e., when TL = TR = T , the solution
of (20) is easily computed to be τ (x) = 1√

T
x(1 − x). Recall that the expression

x(1 − x) also appears in the formulas for spatial covariances in the simple exclu-
sion(7,20) and KMP models. (3) An important difference between these models and
ours is that there, the clocks signaling state changes ring at rate 1, whereas in ours,
they ring at energy-dependent rates. This property is responsible for, among other
things, the slight asymmetry in τ .

5 Implicit here is the idea of a dual particle system similar to that for e.g. the KMP model. We do not
know if such a dual system can be constructed for the random halves model.
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Fig. 8. Comparison of ϕbc and ϕ̂bc. The boundary conditions here are
TL = 5, TR = 45, ρL = ρR = 8, and N = 60. We estimate ϕbc(x) by N ·
CovN (S[x N ], S[x N ]+1)/A8(κ)T ′2 where A8 denotes the 8-chain A-curve computed
in Simulation 5, and plot the resulting curve against y = cτ (x) where c is chosen
to minimize the (unweighted) least-squares distance between the two curves. A
vertical line is placed at x = 1

2 for reference. Clarifications: (i) As noted at the
end of Sec. 4.1, there is a number c1 > 1 such that the A ≈ c1 · A8. Thus the
data points here represent empirical values of c1ϕ

bc. The constant c1 is absorbed
into the choice of c, so that the solid curve can be thought of as c1ϕ̂

bc. (ii) A
least-square minimization is used instead of setting the functions equal at x = 1

2
as prescribed in the text because the data near x = 1

2 are visibly unconverged.

From the limited data available, we clearly cannot conclude the validity of our
conjecture, but details aside, the general ideas seem to point in the right direction.

5. COVARIANCES AT MICROSCOPIC DISTANCES: ρL �= ρR

We return to the general case where both energy and tracer fluxes may be
present. The situation here is more complex, and we are less able to separate the
contributions of the various factors. We will focus on the dominant effects, and
make some observations along the way.

5.1. Responses to Local Gradients

As before, we consider first x = 1
2 . For fixed T and ρ, we consider the function

F(T ′, ρ ′) = F T,ρ(T ′, ρ ′) = F
(

1

2
; T, ρ, T ′, ρ ′

)
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and begin with a few observations on which terms may be absent in its Taylor
series.

Proposition 5.1. F(0, ρ ′) ≡ 0 for all ρ ′.

Proof: Using the notation in Sec. 1, we claim that when T ′ = 0, the invariant
measure µN of the chain is the product

µT,ρ1 × µT,ρ2 × · · · × µT,ρN

where ρL = ρ − 1
2ρ ′ and ρi = ρL + i

N+1ρ ′ for i = 1, . . . , N , so that stored en-
ergies at distinct sites are uncorrelated. This is proved by direct verification
(along the lines of the proof of Proposition 3.7 in Ref. 9). See Appendix B for
details. �

Interchanging TL with TR and ρL with ρR , we see that F(T ′, ρ ′) =
F(−T ′,−ρ ′), so that there are no odd order terms in the polynomial approxi-
mation of F(T ′, ρ ′). Proposition 5.1 says there are no terms that are purely powers
of ρ ′, and we have shown in Sec. 4.1 that among the terms that are pure powers of
T ′, the leading one is T ′2.

Perturbing from equilibrium, we have shown that ∂ F
∂T ′ (0, 0) = ∂ F

∂ρ ′ (0, 0) = 0.

Consider the Hessian D2 F(0, 0). Since ∂2 F
∂ρ ′2 = 0 (Proposition 5.1), it follows that

for |T ′|, |ρ ′| 
 1,

F(T ′, ρ ′) ≈ aT ′2 + bT ′ρ ′, for some a = a(T, ρ) and b = b(T, ρ).
(22)

Recall our brief discussion of the sign of CovN (·, ·) in Sec. 2.2. Our next
lemma says that the degeneracy of the Hessian D2 F(0, 0) is equivalent to all
covariances at x = 1

2 having the same sign, namely the sign of a(T, ρ).

Lemma 5.1. F ≥ 0 in a neighborhood of (0, 0) if and only if a ≥ 0 and b = 0.

Proof: As a quadratic form, the Hessian D2 F(0, 0) has maxima and minima in
perpendicular directions. We know already that it is degenerate along the ρ ′-axis.
Thus either the minimum is negative, that is F(T ′, ρ ′) < 0 for some (T ′, ρ ′), or
the Hessian is positive semi-definite, i.e. a ≥ 0 and b = 0. �

To determine the leading-order terms of the Taylor expansion of F near
(0, 0), in particular to see if b ≡ 0 (equivalently F ≥ 0), we perform the following
simulation:

Simulation 9. Fix T and ρ, and set T ′ = t , ρ ′ = r . Compute F(t, r ) for a grid of
(t, r ) values and use the resulting data to find the best fitting 4th degree polynomial
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Fig. 9. Local polynomial expansion of F . We set T = 100, ρ ∈ {12.5, 20}, T ′ = t ,
and ρ ′ = r at x = 1

2 , then compute F(t, r ) ≈ N · CovN ( 1
2 ) for N = 8 using the

(t, r ) values from the grid (left panel). We then find the best polynomial (in the
sense of least-squares) of the form at2 + btr + ct4 + dt3r + et2r2 + f tr3 which
fits the data (right panel). For both values of ρ, the absolute standard error for the
coefficient of the tr term is ∼ 2 × 10−3.

of the form

P(t, r ) = at2 + btr + ct4 + dt3r + et2r2 + f tr3. (23)

Two sets of results is shown in Fig. 9. We find that in these simulations (and
in others not shown here), the leading-order term in the Taylor polynomial of
F(T ′, ρ ′) is aT ′2 with a > 0. In all cases, |b| 
 1, which is consistent with all
observed covariances being ≥0. As expected, we cannot conclude definitively that
b ≡ 0.

From here on we take as a working assumption that the quadratic form
associated with D2 F(0, 0) above is degenerate, i.e., at x = 1

2 , the only second
order term is A(κ)T ′2 as in the ρL = ρR case. For similar reasons as before,
namely that the qualitative picture elsewhere in the chain should not differ from
that at x = 1

2 , we assume further the absence of T ′ρ ′-terms in the Taylor expansion
of F at all x ∈ (0, 1). This completes our discussion of how covariance depends
on local quantities when the system is not far from equilibrium.

5.2. Far-From-Equilibrium Corrections

We have shown that at x = 1
2 , F T,ρ(T ′, ρ ′) ≈ A(κ)T ′2 is a good approxima-

tion of the response to the local temperature and injection gradients—provided
|T ′| and |ρ ′| are sufficiently small. In the ρ ′ = 0 case, we noted in Sec. 4.1 that
the function T ′ 	→ F T,ρ(T ′) is close but not equal to a perfect quadratic for large
T ′. We now investigate the effect of larger |ρ ′| on F T,ρ(T ′, ρ ′).
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Fig. 10. Responses to local gradients for various T ′ and ρ ′ at x = 1
2 . We fix T ,

ρ, and T ′ at x = 1
2 , then plot N · CovN ( 1

2 )/A(κ)T ′2 as a function of ρ ′/ρ. Each
curve corresponds to one value of T ′. The parameters are N = 12, T ( 1

2 ) = 50,
ρ( 1

2 ) ≈ 9.68, and T ′( 1
2 ) = 90, 70, 50, and 30 (top to bottom). Some of the curves

are discontinued because when T ′( 1
2 ) and ρ ′( 1

2 ) are large, T (x), which decreases
monotonically with x , may reach 0 before x does. This is easily seen from
Theorem 1.

Simulation 10. For fixed values of (T, ρ), compute F T,ρ(T ′, ρ ′) at x = 1
2 as a

function of T ′ and ρ ′, and study the deviations from the function A(κ)T ′2.

A set of results is shown in Fig. 10. The results for other choices of (T, ρ) (not
shown) are similar.

Observe that (i) the dominant factor is A(κ)T ′2, but a moderate correction
(roughly 20% for |ρ ′/ρ| ≤ 1) to the leading coefficient is sometimes needed; and
(ii) a larger |ρ ′| tends to increase covariances. Along the lines of the conjectural
thinking that positive covariances are caused by waves of abnormally high (or
low) energy tracers with long wavelengths, the presence of a tracer flux appears
to amplify the propagation of these waves.

5.3. Nearest-Neighbor Covariances in Long Chains

We have seen that the presence of a tracer flux complicates the behavior
of covariances at x = 1

2 when the system is far from equlibrium. We do not
know how it affects the propagation of boundary effects, or how to separate these
contributions (or if they can be separated at all). We will demonstrate in this
subsection, however, that the main ingredients in CovN (Si , Si+1) are those already
identified in Sec. 4.

More precisely, let ϕbc and ϕ̂bc be as defined in Sec. 4.3. That is to say, ϕbc

is as defined in (18), τ the solution of (20), and ϕ̂bc(x) = cτ (x) where c is chosen
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to ensure cτ ( 1
2 ) = ϕbc( 1

2 ). We test the validity of

CovN

(
S[x N ], S[x N ]+1

) ≈ 1

N
· ϕ̂bc(x) · A(κ(x)) · T ′(x)2 (24)

as an approximate relation.

Simulation 11. For fixed boundary conditions with ρL �= ρR, and N taken as
large as possible, compare empirically computed values of CovN (Si , Si+1) to their
predicted values given by (24).

The results for two sets of boundary conditions are plotted in Fig. 11. Notice that
only the shapes of C(x) are being predicted because of unknown normalization
factors.

Figure 11 confirms many features of our predictions. First, the shapes of
C(x) confirm that the randomizing effects of the heat baths are diffusive in nature;
these effects result in an effective-distance factor whose graph takes the form of a
distorted parabola. Second, the locations of the peaks of C(x) show the influence
of T ′; see the left column of Fig. 11.6 Finally, comparison of the data for different
N in each set provide another confirmation of the O(1/N ) scaling.

Figure 11 also shows the need for corrective factors on the order of 10–15%
away from the boundaries. While we do not know the precise nature of these
corrections, we point out that in the presence of a tracer flux, the functions ϕbc

(as computed from empirical data) are a little more asymmetric than in the case
ρL = ρR (shown in Fig. 8).

6. LONG-RANGE COVARIANCES

6.1. Renormalizability and the Function C2(x, y)

In Sec. 3, we introduced the idea of a pair-covariance function C2(x, y). The
existence of the limit in the definition of C2(x, y) implies the following: for all
sufficiently large N , N ′,

N · CovN

(
S[x N ], S[yN ]

) ≈ N ′ · CovN ′
(
S[x N ′], S[yN ′]

)
. (25)

This can be seen as a statement about the renormalizability of pair covariances:
Consider an N -chain with N = r N0 for some integers N0 and r , and subdivide
the chain into N0 groups of r consecutive sites. For convenience, we take r to be
odd. Let i (r ) = (i − 1)N0 + 1

2 (r + 1), i.e., i (r ) is the index of the middle of the r
sites in the i th group. For any i, j with 1 ≤ i, j ≤ N0 and i �= j , we compare the

6 In Fig. 11(a), both T ′2 and A increase from left to right; in (b) T ′2 increases from 4 × 102 to 6 × 103

while A decreases from 0.07 to 0.04.
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Fig. 11. Nearest-neighbor covariances. Left column: Temperature profiles T (x).
Right column: Empirically computed values of CovN (Si , Si+1), plotted against
predicted covariances using Eq. (24). The predicted covariance curves are scaled
to coincide with the empirical curves at x = 1

2 .

covariance at sites i and j in an N0-chain to that at sites i (r ) and j (r ) in an N -chain
with the same boundary conditions. Eq. (25) tells us that r · Covr N0 (Si (r ) , Sj (r ) ) ≈
CovN0 (Si , Sj ) if N0 is sufficiently large, and that as r → ∞, r · Covr N0 (Si (r ) , Sj (r ) )
converges to a constant.

We test this renormalizability to confirm that C2(x, y) is well defined.

Simulation 12. Fix TL , TR, ρL , ρR, and N0 ∈ Z
+. For various pairs (i, j) in the

N0-chain, compute N · CovN (Si (r ) , Sj (r ) ) for N = r N0, r = 3, 5, 7, . . . .
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Fig. 12. Renormalizability of the covariance function. The plot shows N ·
CovN (Si (r ) , Sj (r ) ), where N = r N0, N0 = 8, and r = 1, 3, 5, . . . , 13. From top to
bottom, the curves correspond to the (i, j) pairs (3, 4), (3, 5), (2, 3), (2, 4), (2, 5),
and (2, 6). Boundary conditions are TL = 10, TR = 100, ρL = 20, ρR = 10.
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Fig. 13. Covariances at macroscopic distances. These plots show CovN (S[x N ], S[yN ])
as a function of y, with x fixed at ≈ 1/3.

A subset of the data is shown in Fig. 12. Because the value of N0 used is relatively
small (N0 = 8), one can expect the plotted values r N0 · CovN (Si (r ) , Sj (r ) ) to con-
verge or stabilize to constants only as r increases. The results show that they, in
fact, stabilize fairly quickly.

That C2(x, y) is well defined implies that the function (x, y) 	→ CovN (S[x N ],

S[yN ]), when normalized, settles down to a fixed shape for large N . We now in-
vestigate the shapes of these functions. While carrying out Simulations 8 and
12, we also collected data for CovN (Si , Sj ) for various pairs of i, j . Graphs of
j 	→ N · CovN (Si , Sj ) with i = [ 1

3 N ] are shown in Fig. 13 for three sets of bound-
ary conditions. As predicted in Sec. 2.2, these functions are bounded, and they
decrease monotonically to 0 as |i − j | increases. This decay rate is roughly linear
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in macroscopic distance, and extraordinarily slow per lattice site. For example,
if N = 106 and i = [ 1

3 N ], then CovN (Si , Si+1) ≈ 2 · CovN (Si , S2i ). We note that
these findings are consistent with fluctuating hydrodynamics; see e.g. Ref. 20.

6.2. An Approximate Formula

A natural generalization of the nearest-neighbor covariance formula (24) to
pair covariances separated by macroscopic distances is

CovN

(
S[x N ], S[yN ]

) ≈ 1

N
· ϕbc

2 (x, y) · Ā(x, y) · T̄ ′(x, y)2 . (26)

We think of this as an approximate formula that holds for x, y ∈ (0, 1) with
0 < |x − y| 
 1: ϕbc

2 (x, y) is a notion of effective distance of the pair x, y to the
boundary, and Ā and T̄ ′ are generalizations of corresponding quantities in (24).
As a rough approximation, one may take

Ā(x, y) = 1

2
(A(κ(x)) + A(κ(y))), T̄ ′(x, y) = T (y) − T (x)

y − x
. (27)

To obtain information on ϕbc
2 (x, y), we estimate it using (26), taking Ā and

T̄ ′ as above. Slices of the graphs of these functions of 2 variables, with x fixed
and y varying, are shown in Fig. 14.

Piecing together these slices, we deduce the following geometric facts about
our 2-point distance function ϕbc

2 defined for (x, y) ∈ (0, 1) × (0, 1): it is continu-
ous and piecewise smooth, with a “ridge” along the line {x = y}. Along that line,

10.80.60.40.20

y
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0.6

0.4

0.2

0

ϕ 2bc
(1

/3
, y

)

Fig. 14. A slice of the 2-point distance function ϕbc
2 . Here, we use Eqs. (26) and

(27) to compute the graphs of y 	→ ϕbc
2 (x, y), x ≈ 1

3 , from the data in Fig. 13. The
results are normalized to 1 at x and overlaid.
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it is equal to ϕbc(x) = ϕbc(y), the value of the 1-point distance function introduced
in Sec. 4.3. For fixed x , the function y 	→ ϕbc

2 (x, y) is roughly piecewise linear,
peaking at y = x .

Observe that if this function were exactly piecewise linear, then by exchanging
x and y, we would arrive at the relation

ϕbc(x) · 1 − y

1 − x
= ϕbc(y) · x

y
for x < y .

This relation implies that ϕbc(x) = cx(1 − x) for some constant c. Since ϕbc is
roughly parabolic (see Secs. 4.3 and 5.3), the approximate piecewise linearity of
ϕbc

2 is consistent with our results from previous sections. (Exact formulas for the
simple exclusion(7,20) and KMP models (3) also contain piecewise linear functions.)
On the other hand, we know from Secs. 4 and 5 that for the random halves model,
ϕbc(x) �= cx(1 − x). Thus ϕbc

2 cannot be exactly piecewise linear either.
In summary, our results for long-range covariances are rough and are ob-

tained by extrapolating from what we know about covariances at microscopic
distances, together with a numerical determination of the distance function ϕbc

2 .
An approximate formula is

CovN

(
S[x N ], S[yN ]

)

≈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

N
·
(

1 − y

1 − x

)
· ϕ̂bc(x) · Ā(x, y)

(
T (y) − T (x)

y − x

)2

for 0≤ x ≤ y ≤1 ,

1

N
·
( y

x

)
· ϕ̂bc(x) · Ā(x, y)

(
T (y) − T (x)

y − x

)2

for 0 ≤ y ≤ x ≤1 ,

where ϕ̂bc is our approximate one-point distance function and Ā is as in (27). Both
this formula and Fig. 13 show clearly the following:

(i) Covariance decays essentially linearly with macroscopic distance, i.e.,

C(x) − C2(x, y) ∼ |x − y| .

(ii) For fixed x , the function y 	→ C2(x, y) is continuous but not differentiable
at y = x ; it has opposite concavity on the two sides of x if the temperature
profile T (y) is nonlinear.

That the curvature changes sign at x is clearly visible in Fig. 13; it is also evi-

dent from the second derivative of
( T (y)−T (x)

y−x

)2
(see Fig. 11, left column, for the

temperature profiles T (y)).
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CONCLUSIONS AND REMARKS

Via a series of theoretical arguments and numerical simulations, we have
developed a coherent picture for the spatial covariances at steady state of the 1-D
random halves model. We have established firmly that stored-energy covariances
have order of magnitude 1

N away from the boundaries of N -chains. This in itself
points to the presence of long-range covariances which decay very slowly. Subse-
quent analysis shows that covariances decay linearly with macroscopic distance.
For sites separated by microscopic distances, we have a simple formula that en-
capsulates the main ingredients on which energy covariances depend, including
(i) a quadratic response to local temperature gradient, (ii) diffusive nature of the
randomizing effect of the heat baths, and (iii) stabilizing effects of large numbers
of tracers.

Since the random halves models are stochastic idealizations of certain me-
chanical models, we hope our results will also shed light on these and similar
Hamiltonian systems. There are, however, important differences, such as mixing
and memory issues (see e.g. Ref. 8, 9). The extent to which the picture established
here carries over to the Hamiltonian setting remains to be seen.

Finally, it is well known that nonequilibrium phenomena are quite different
in higher dimensions. Our detailed study here provides a baseline for explorations
in 2-D and 3-D, a project currently being carried out by the authors. The results,
which are indeed different as predicted by fluctuating hydrodynamics, will be
reported in a forthcoming paper.

APPENDICES

Appendix A: Remarks on Simulations

The simulations carried out in this paper implement directly the dynamics
described in Sec. 1.1; expectation values with respect to the invariant measures
are computed via time averages over long trajectories. The numerical issues are
quite similar to those of Markov chain Monte Carlo computations.

We calculate empirical error bars using a standard “batch means” estimator.
These error bars measure only statistical errors that arise from the fact that ex-
pectation values are estimated by time-averaging over finite intervals of time, i.e.
finite-length trajectories. The error bars do not account for finite-size effects, i.e.
bias due to the fact that we can only simulate N -chains with finite N . To improve
clarity and readability, we have suppressed the error bars in most of the figures,
displaying only those that are directly relevant to the issues being discussed.

A variety of variance reduction techniques have been invented to speed up the
convergence of Monte Carlo calculations, ranging from multigrid Monte Carlo (19)

to large deviations-based importance sampling. (4) Most of these techniques require
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additional information, such as an explicit expression for the invariant measure or
a large deviations functional. Such methods do not work in our setting. There is
on-going work on a class of algorithms which do not require detailed knowledge
of the invariant measure. (12) However, it is not known whether such techniques
can be applied to the random halves model.

The quantities of interest in most of our simulations are the CovN (Si , Sj ). In
general, these are relatively small numbers that are differences of two much larger
numbers and can be rather costly to compute. We estimate the cost of computing
CovN as follows: for temperatures which are ∼ T , both E(Si S j ) and E(Si )E(Sj )
are ∼ T 2, while CovN (Si , Sj ) ∼ A(κ̄)T ′2/N , where κ̄ is the typical tracer density
per site. (For the present discussion, we focus on i, j away from the boundaries
so that ϕbc(x) ∼ 1.) In order to compute CovN (Si , Sj ) with a relative error of ε,
we need E(Si S j ) with a relative error of εA(κ)(T ′/T )2/N ; the same is true for
E(Si )E(Sj ). Since the statistical error in the time average 1

τ

∫ τ

0 Si (τ ′)Sj (τ ′) dτ ′

is ∼ √
α/τ for some α, this means we need to integrate the system for a time τ

which is proportional to N 2/ε2 A(κ̄)2 · (T/T ′)4. Now, the computational cost of
simulating the system up to time τ , as measured by the total number of “events,”
is proportional to the number of tracers κ̄ N in the system and the mean rate of
activity of each tracer (which is ∼ √

T ). Thus, we have

computational cost ∼ α · N 3κ̄

ε2 A(κ̄)2

(
T

T ′

)4 √
T . (28)

For our simulations involving long chains, we have found α to be typically <∼ 10.
As an example, for ε = 5%, N = 60, TL = 5, TR = 45, ρL = ρR = 8, we have
κ̄ ≈ 6, and A(κ̄) ∼ 0.1, so that ∼4 × 1011 events are needed. On our computer
system,7 this requires ∼14 days.

Equation (28) tells us that the computational cost grows rapidly as T ′/T
decreases. In Simulations 4, 6, and 9, where we study the small-T ′ behavior of
the covariance function, this rapid growth prevents us from taking T ′ too small.
However, we do not always need small T ′/T , and a large temperature gradient
not only reduces the computational cost, it also takes the system farther out of
equilibrium so that some effects are made more transparent.

The cost also grows rapidly as N increases. This is why we use short chains
wherever possible, for example in computing the A-curve. In Simulation 5, we
use N = 8 because we feel that the amount of accuracy gained from using longer
chains is perhaps not worth the additional cost. However, it is not always possible
or advisable to use short chains, particularly where infinite-volume limits are

7 We performed most of our simulations using GCC on 900 MHz SPARCv9 processors. Note that this
running time estimate also depends on how much information is collected during the simulation.
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involved. In such cases, one can sometimes obtain better results by increasing
T ′/T .

Finally, recall that A(κ̄) ∼ 1/κ̄ for κ̄ � 1, so the computational cost is ∼ κ̄3

for large κ̄ .

Appendix B: Invariant Measures

Proof of Proposition 5. The proof of invariance of the measure µT,ρ1 ×
· · · × µT,ρN follows closely that of Proposition 3.7 in Ref. 9. We refer the reader
to Ref. 9 for some of the background notation. Fix a phase point

z̄ = (
z̄(1), . . . , z̄(N )

) = ({
x̄ (1)

1 , . . . , x̄ (1)
k1

}
, y(1); . . . ;

{
x̄ (N )

1 , . . . , x̄ (N )
kN

}
, y(N )

)
.

We assume x̄ (n)
1 , . . . , x̄ (n)

kn
are distinct, and let ε, h > 0 be arbitrarily small numbers.

Fix arbitrary n with 1 < n < N . We will compare the 3 probabilities, Pn,·, Pn+1,n

and Pn−1,n defined below:
Let Pn,· be the probability that at time t = 0, in every site j , there are exactly

k j tracers the energies of which lie in disjoint intervals
[
x̄ ( j)

1 , x̄ ( j)
1 + ε

]
, . . . ,

[
x̄ ( j)

k j
, x̄ ( j)

k j
+ ε

]
,

and before t = h, the tracer in site n with energy in [x̄ (n)
1 , x̄ (n)

1 + ε] exits the site.
The number Pn+1,n is the probability that at time 0, the tracer configuration is as
above except that the tracer with energy in [x̄ (n)

1 , x̄ (n)
1 + ε] is in site n + 1 instead

of site n (i.e., there are kn − 1 tracers in site n and kn+1 + 1 tracers in site n + 1),
and before time t = h, this tracer jumps from site n + 1 to site n. The number
Pn−1,n is defined analogously with site n − 1 playing the role of site n + 1.

To prove the invariance of µT,ρ1 × · · · × µT,ρN , three sets of balancing condi-
tions have to be met. The interaction with tanks is as in [EY]. We verify below the
equation involving interaction between neighbors, namely Pn,· = Pn+1,n + Pn−1,n ,
and leave the one involving interaction with a bath to the reader.

Let σk, ck and pk be as in Proposition 1.1 (Sec. 1.2). We will use the shorthand
σki = σki (z̄

(i)), and write p(i)
k to remind ourselves that ρ = ρi at site i (ck and σk

do not depend on ρ). First,

Pn,· = �N
i=1 p(i)

ki
cki σki ε

ki +1 ·
√

x̄ (n)
1 eβ x̄ (n)

1
1

ε
·
∫ x̄ (n)

1 +ε

x̄ (n)
1

h
√

x
1√
x

e−βx dx

= h · �N
i=1 p(i)

ki
cki σki ε

ki +1
√

x̄ (n)
1 := h · Z

where Z is defined by the equality above. Next, Pn+1,n = 1
2 I · II · III where

I = �i �=n,n+1
(

p(i)
ki

cki σki ε
ki +1

)
,
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II = p(n)
kn−1ckn−1σkn

√
x̄ (n)

1 eβ x̄ (n)
1 εkn ,

III = p(n+1)
kn+1+1ckn+1+1σkn+1ε

kn+1+1
∫ x̄ (n)

1 +ε

x̄ (n)
1

h
√

x
1√
x

e−βx dx .

This product can be written as

h

2
· Z ·

(
p(n)

kn−1

p(n)
kn

ckn−1

ckn

)

·
(

p(n+1)
kn+1+1

p(n+1)
kn+1

ckn+1+1

ckn+1

)

= h

2
· Z ·

(
T

2ρn

)
·
(

2ρn+1

T

)
.

The equality above follows from the relation

ck pk

ck+1 pk+1
= T

2ρ
,

which can be derived from the characterization of µT,ρ (Proposition 1.1). An
analogous argument holds for Pn−1,n , and the desired equality follows from

1

2

(
ρn+1

ρn
+ ρn−1

ρn

)
= 1 .

�
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